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Abstract
Arsenic and its compounds are well‐established, potent, environmentally widespread and persis-

tent toxicants with metabolic, genotoxic, mutagenic, teratogenic, epigenetic and carcinogenic

effects. Arsenic occurs naturally in the Earth's crust, but anthropogenic arsenic emissions have

surmounted the emissions from important natural sources such as volcanism. Inorganic arseni-

cals exhibit acute and chronic toxicities in virtually all cell types and tissues, and hence arsenic

intoxication affects multiple systems. Whereas acute arsenic intoxication is rare and relatively

easy to diagnose, chronic arsenic intoxication (CAsI) is common but goes often misdiagnosed.

Based on a review of the literature as well as our own clinical experience, we propose a chronic

arsenic intoxication diagnostic score (CAsIDS). A distinctive feature of CAsIDS is the use of

bone arsenic load as an essential criterion for the individual risk assessment of chronic arsenic

intoxication, combined with a systemic clinical assessment. We present clinical examples where

CAsIDS is applied for the diagnosis of CAsI, review the main topics of the toxicity of arsenic in

different cell and organ systems and discuss the therapy and prevention of disease caused or

aggravated by chronic arsenic intoxication. CAsIDS can help physicians establish the diagnosis

of CAsI and associated conditions.

KEYWORDS

arsenic, bone, CAsIDS, chronic, intoxication, risk assessment
1 | INTRODUCTION

Arsenic and its compounds are well‐established, potent, environmen-

tally widespread and persistent toxicants with metabolic, genotoxic,

mutagenic, teratogenic, epigenetic and carcinogenic effects (Bjørklund,

Aaseth, Chirumbolo, Urbina, & Uddin, 2017; Mandal & Suzuki, 2002;

Tapio & Grosche, 2006).

Arsenic occurs naturally in the Earth's crust, but anthropogenic inor-

ganic arsenic emissions from activities such as metal mining, burning of

fossil fuels and pumping of contaminated groundwater for industrial,

agricultural, animal and human uses have quantitatively surmounted

the emissions from important natural sources such as volcanism on a

planetary scale, thus introducing a global issue of sizeable stature (Dani,

2010a; Hong et al., 2009; Wai, Wu, Li, Jaffe, & Perry, 2016). Estimates

based solely on the known reserves of arsenic in exploitable gold, coal

and oil deposits indicate a 9‐ to 236‐fold increase in annual anthropo-

genic arsenic emission in the next decades, i.e., more anthropogenic arse-

nic will be emitted within a couple of decades, than had been emitted

during more than two centuries of the past Industrial Age (Figure 1).

Worldwide, hundreds of millions of people are chronically exposed

to clinically meaningful inorganic arsenic concentrations (Mandal &
d. wileyonlin
Suzuki, 2002; Naujokas et al., 2013), and humans are more susceptible

to the toxic effects of arsenic than any other mammal so far studied

(Dani, 2009a). Whereas symptomatic arsenic poisoning is not often

seen in occupational exposure settings, attempted homicide, deliber-

ate long‐term poisoning as well as chronic environmental exposure

have resulted in chronic toxicity and chronic arsenic intoxication (CAsI)

(Argos et al., 2010; Grobe, 1976; Grobe, 1977; Grobe, 1980; Grobe,

1982; Hall, 2002; Kawasaki, Yazawa, Ohnishi, & Ohi, 2002; Misra &

Kalita, 2009).

Chronic arsenic exposure (CAsE) and CAsI have primarily been

associated with an increased risk of various types of cancer, skin

lesions and vascular disorders. It is now clear that CAsE can also cause

metabolic, endocrine, hematologic, immunologic, gastrointestinal,

hepatic, respiratory, cardiovascular, renal and neurologic diseases. In

addition, CAsE and CAsI can negatively affect human fecundity and

reproduction. The leading causes of morbidity and mortality worldwide

– vascular diseases (including cardiovascular and cerebrovascular

diseases), infectious diseases, cancer (particularly lung cancer),

diabetes, diseases of the liver and kidneys, Alzheimer's disease and

other dementias (WHO, 2017) – can also be caused or aggravated by

long‐term arsenic exposure.
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FIGURE 1 Estimates of past (in black) and future (in gray)
anthropogenic arsenic emissions from known reserves of the three
selected arsenic sources: gold, coal and oil deposits. Here we
compare the conservative estimate of the total (cumulative)
anthropogenic arsenic in the industrial age as of the year 2000 as
obtained by (*) Han et al. (2003), with estimates based on the
average amounts of arsenic in exploited and exploitable gold, coal
and oil deposits, as reviewed in (**) Dani (2010a). The former amount
to 4.5 × 103 Kt, as for the year 2000, whereas the latter amount to
120 × 103 Kt and 266 × 103 Kt, as for the years 2000 and 2050,
respectively. To calculate the average yearly anthropogenic arsenic
emissions, we divided the estimates by the number of years in the
periods concerned, i.e., 200 years for the Industrial Age (1800–2000),
and 50 years for the period 2000–2050. These estimates indicate a
9‐ to 236‐fold increase in annual anthropogenic arsenic emission in
the next decades, based solely on the estimated arsenic content in
known reserves of gold, coal and oil.
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Although CAsI is common, it goes often misdiagnosed, perhaps

because no systemic approach to the diagnosis of CAsI has been

devised so far. To our knowledge, there is one published guide for

the diagnosis of arsenicosis (Saha, 2003), but this is a clinical staging

guide based on skin changes rather than a systemic diagnosis guide.

Based on a review of the literature and our own clinical experience

we propose a CAsI diagnostic score (CAsIDS). We postulate that

three elements taken together are necessary and sufficient to confirm

a suspected CAsI: (i) documented or suspected CAsE with (ii) pres-

ence of arsenic in the bone compartment and (iii) at least one docu-

mented subclinical or clinical arsenic toxicity sign or symptom. A

distinctive feature of CAsIDS is the use of bone arsenic load (BAsL)

as an essential criterion for the individual risk assessment of CAsI,

combined with a systemic clinical assessment. The degree of diagno-

sis certainty is related to the arsenic concentration in the bone com-

partment as well as the number of simultaneous arsenic toxicity signs

and symptoms. We review the toxicity of arsenic in different cell and

organ systems and discuss the therapy and prevention of disease

caused by CAsI.
2 | CHRONIC ARSENIC INTOXICATION
DIAGNOSTIC SCORE METHODOLOGY

Known or suspected CAsE and quantification of BAsL are fundamental

and essential conditions for CAsI diagnosis, respectively. Arsenic expo-

sure is the sum of exposure through all routes including inhalation,

ingestion, dermal contact and through osteoresorption (Dani, 2013).

The excretion of arsenic occurs mainly through the urine. Under condi-

tions of chronic intake the concentrations of arsenic in the body reach

equilibrium after about 100 days; if the intake of arsenic is suspended

then the organ content rapidly falls for all organs except bone – only

bone continues to accumulate arsenic throughout life (Adeyemi,

Garelick, & Priest, 2010).

Associations between urinary arsenic above certain thresholds

and increased morbidity and mortality have been described for a

number of diseases. The threshold for diabetes has been found to be

12 μg g−1 creatinine (Feseke et al., 2015), whereas the threshold for

cardiovascular diseases has been reported to be 7 μg g−1 creatinine

(Moon et al., 2013). Yet for various cancer types including cancer of

the lung, prostate and pancreas, the associations between urinary

arsenic and morbidity and mortality have been described as dose‐

dependent, without threshold (García‐Esquinas et al., 2013). In fact,

arsenic concentrations associated with increased cancer risk have been

found to be near the arsenic detection limit, e.g., 1.77 ng m−3 in air

(Yoshikawa, Aoki, Ebine, Kusunoki, & Okamoto, 2008) and 3 μg l−1 in

drinking water (NCS, 2001). The general conclusion is that there is

no such thing as a safe chronic exposure level for a carcinogenic sub-

stance such as arsenic. In addition, chronic exposure to high concentra-

tions of arsenic in drinking water results in the highest known

increases in mortality attributable to any environmental exposure

(Smith, Steinmaus, Yuan, Liaw, & Hira‐Smith, 2007).

Here we use the following reference values (RFs) for CAsE (total

inorganic arsenic exposure is the summation of exposures through all

routes and compartments): 1.77 ng m−3 in air (Yoshikawa et al.,

2008); 3 μg l−1 in drinking water (NCS, 2001); 7 μg g−1 creatinine in

urine (Moon et al., 2013). These RFs are not meant to imply that they

are safe, as there is no such thing as a safe environmental exposure

level for a carcinogenic substance such as arsenic. They simply are con-

sistent with the evidence that CAsE may require environmental arsenic

concentrations as low as at the part per billion level (1 ppb = 1 μg kg−1)

to affect negatively human health (Eisler, 1994; Eisler, 2004; Marshall

et al., 2007; Meliker, Wahl, Cameron, & Nriagu, 2007; Moon et al.,

2013; Valentine, Reisbord, Kang, & Schluchter, 1985).

The RFs should be compared to the WHO provisional maximum

tolerable daily intake of inorganic arsenic (0.002 mg kg−1 of body

weight, i.e., 2 μg kg−1 day−1) (WHO, 2001a); the FAO/WHO maximum

allowed arsenic concentration in rice (0.2 mg kg−1) (WHO, 2014); the

arsenate dose that is active in the treatment of acute promyelocytic

leukemia (APL), 60 μg kg−1 day−1 (Soignet et al., 1998); the human

LD50 for arsenate, 1 mg kg−1 (i.e., 1 μg g−1 or 1 part per million,

1 ppm) (Dart, 2004) and the total arsenic concentrations in air of rural

and remote areas, 0.02–4 ng m−3 (WHO, 2001b).

As to CAsE grading over time we start from the minimal time

required for arsenic to reach equilibrium in the body compartments,

as predicted by the Middlesex University multicompartment model
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(Adeyemi et al., 2010), and refer to the latency periods between the

onset of CAsE and the clinical manifestation of CAsI as reported in a

series of reports by Grobe (1976, 1977, 1980, 1982) where the latency

time varied from 3 to 50 years (average: 26 years), depending on the

level of CAsE (Table 1).

To grade the individual CAsE, we establish BAsL intervals based

on the median bone arsenic concentration reported for 160 autopsy

and 92 surgical specimens (Brodziak‐Dopierała, Kwapulinski, & Kowol,

2011; Mari et al., 2014; Yoo et al., 2002) as well as the estimated BAsL

in a number of our own patients presenting with arsenic neuropathy.

BAsL can be estimated non‐invasively as osteoresorptive arsenic in

two consecutive urine samples as described elsewhere (Dani, 2013).

To grade the clinical manifestation of CAsI, we include known sys-

temic manifestations of CAsI encompassing cutaneous disorders;

hematologic and/or immunologic disorders; gastrointestinal disorders;

metabolic, endocrine and reproductive disorders; chronic pulmonary

disease; cardiovascular disorders; renal disorders; pre‐malignancy and

malignancy; neuropathy and encephalopathy or mental disease.

A score is assigned for each of the above CAsE and CAsI criteria

and the CAsIDS result or total score is obtained by the sum of all

partial scores. More weight is given to CAsE and BAsL because they

are considered as fundamental and essential for diagnosis, respec-

tively. Based on the CAsIDS result, CAsI is excluded, suspected or

confirmed (Table 2).
3 | EXAMPLES OF CHRONIC ARSENIC
INTOXICATION DIAGNOSTIC SCORE IN
PATIENTS EXAMINED IN TWO COUNTRIES

3.1 | Example 1

A 50‐year‐old woman of Afro‐Brazilian origin with a history of chronic

arsenic exposure in a traditional gold mining area, whole body derma-

titis, urticaria, irritating bullous eruptions on the plantar and side

surfaces of her feet. She developed multiple hypopigmented spots on

her skin, myocardial infarction, refractory poikilocytic anemia, fatigue,

loss of appetite, low weight, mental slowing, Hashimoto thyroiditis,

vitamin D insufficiency with secondary hyperparathyroidism, osteopo-

rosis and elevated BAsL in the context of osteoresorptive arsenic

intoxication (ORAI). Details of this patient have been reported else-

where (Dani, 2013). CAsIDS: 69 (CAsI confirmed with a high degree

of certainty) (Figure 2).
3.2 | Example 2

This German patient was born in 1926 and died in 2013 at the age of

87 years after long years of chronic polymorbidity. He had been chron-

ically contaminated by inorganic arsenic as a World War II prisoner

working in the Sociéte Chimique de Gerland, a pesticide factory in

Lyon, France. There he used to produce at least two arsenic‐based

pesticides: “Arséniate de Chaux” and “Acéto‐Arsénite de Cuivre.” He

developed chronic tonsillitis, bronchitis, hyperuricemia, chronic ane-

mia, low weight, arterial hypertension, atrioventricular block and atrial

fibrillation, mitral insufficiency, melanosis and hyperkeratosis. The

diagnosis of “arsenism” was only confirmed in 1991, based on the
anamnesis and presence of multiple skin cancers over his entire body

(squamous cell carcinoma, Bowen's disease). He finally developed ure-

ter and bladder tumor, liver dysfunction with ascites, chronic kidney

disease (CKD) with the need of regular dialysis culminating in terminal

renal failure, coma and death. No urinary arsenic determination could

be performed due do the patient's anuria at the time of examination

a few hours preceding his death. CAsIDS (without BAsL): 47 (CAsI

confirmed) (Figure 3).
3.3 | Example 3

This German patient was born in 1933. He was chronically contami-

nated with inorganic arsenic from pesticides while working as a wine-

grower in the Rhineland‐Palatinate region in Southern Germany. He

developed chronic anemia, an unclear myeloproliferative disease, arte-

rial hypertension, prolonged QTc interval, peripheral vascular disease,

diffuse hyperkeratosis, multiple in situ carcinomas of the skin (Bowen's

disease), glaucoma, latent hypothyroidism, CKD, bulbitis–duodenitis–

duodenal ulcer, Parkinson's disease and dementia. A screening test

(Merckoquant®; Merck, Darmstadt, Germany) revealed a urinary arse-

nic concentration of 100 μg l−1 in the morning urine, equivalent to an

arsenic/phosphor ratio (As/P) of 6.3 μg mmol−1. CAsIDS: 64 (CAsI con-

firmed with a high degree of certainty) (Figure 4).
3.4 | Example 4

This 49‐year‐old woman lives in Paracatu town, Brazil, less than 200 m

away from the southern border of the open pit gold mine operated by

Canadian Kinross Gold Corporation (Henderson, 2006). During the last

30 years (i.e., since the beginning of the mining activities in 1987), this

patient has been chronically exposed to the inorganic arsenic released

from the rocks of the gold mine. The already meaningful CAsE since

1987 increased from 2007 with the controversial expansion of the

mine operations (Acangau Foundation, 2009; Boudaoud & France TV,

2017; Dani, 2009b, 2009c, 2009d, 2009e; Dani, 2011a, 2011b; Dani,

2012; Dani, 2014; Dani & Santos, 2014; Enríquez, 2007; KGC, 2006,

2010, 2012, 2014, 2015, 2016a, 2016b; Lisboa, 2015; Lukacs &

Groves, 2013; Minas Gerais, 2007; Moura, Rezende, Nascentes, Costa,

& Windmoeller, 2008; MPF, 2009; MPT, 2008; Neiva & Silveira, 2008;

Ono et al., 2011; Ono, Tappero, Sparks, & Guilherme, 2016; Rezende,

2009; Rezende, Costa, & Windmöller, 2015; Santos, 2012; Santos &

Dani, 2016; Terrier, 2011). The patient complained of chronic head-

ache, abdominal pain, pruriginous dark skin lesions of the feet, poor

vision, symmetrical numbness and tingling of her hands and feet, bron-

chitis, arterial hypertension and malaise. In 2011, the concentration of

arsenic in her spot urine as determined by inductively coupled plasma

mass spectrometry (ICP‐MS) was 30.9 μg l−1 (Castilhos, 2016). In 2016,

she had a stroke and as result of which she showed a M4‐hemiparesis

of the left side. The physical examination also revealed melanosis of

the palms; spotted and diffuse hyperkeratosis and melanosis of the

soles, and cutaneous changes typical of blackfoot disease (i.e., periph-

eral vascular disease). In February, 2017, the analysis of her BAsL

according to the Δ As/P method (Dani, 2013) using AAS revealed an

estimated BAsL/skeletal weight of 10.8 μg g−1. This concentration is

increased by 70‐fold compared to the median of the bone arsenic
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concentrations reported for surgical and autopsy specimens that had

been analyzed by ICP‐MS in different populations across the globe

(Brodziak‐Dopierała et al., 2011; Mari et al., 2014; Yoo et al., 2002).

CAsIDS: 53 (CAsI confirmed with a high degree of certainty)

(Figure 5).
4 | DISCUSSION

Our CAsIDS combines fundamental and essential conditions of CAsI –

known or suspected CAsE and BAsL, respectively – with clinically

relevant systemic manifestations of CAsI. In the following sections,

we discuss important aspects that pose challenges as well as solutions

to CAsI diagnosis. Finally, we briefly review what is currently known

about arsenic toxicity and discuss the therapy and prevention of

disease caused or aggravated by CAsI.
4.1 | Estimating the chronic arsenic exposure by
environmental monitoring

Estimation of CAsE by environmental monitoring of arsenic concentra-

tion in drinking water and food as well as total suspended particles in

air is interesting in environmental surveys but it is of limited clinical

utility because assessment of bioavailable arsenic in environmental

matrices can be very inaccurate and biased and do not reflect the

individual's exposure. Recently, it has been shown in a long‐term

observational study that evidence for health effects of inhaled arsenic

derives mainly from occupational studies that are subject to unique

biases that may attenuate or obscure such associations (Keil &

Richardson, 2017). Most assays do not capture the whole range of

exposure pathways and routes and the results of particular assays

cannot be extrapolated. For example, gastrointestinal bioavailability

indexes cannot be reasonably applied to the respiratory tract, as the

half‐life of arsenic compounds in the lungs is considerably higher than

that in the gastrointestinal tract (Rhoads & Sanders, 1985). Certain

arsenic compounds may remain in the lungs for several years, even

after the exposure to environmental arsenic has ceased (Brune,

Nordberg, & Wester, 1980). Although particles deposited in the upper

airways and swallowed after mucociliary clearance result in gastroin-

testinal tract absorption, smaller particles are deposited more deeply

in the respiratory tract, and the fraction of arsenic absorbed by inhala-

tion is thought to be within 60–90% of inhaled arsenic (NIOSH, 2005;

Yip & Dart, 2001), which is more than generally indicated by gastroin-

testinal assays. In addition, the usual methods of environmental moni-

toring capture neither the highly bioavailable arsenic nanoparticles

suspended in air, nor the volatile (gaseous) arsenic forms that are clin-

ically relevant, and neither the gastrointestinal nor the dermal bioavail-

ability assays account for highly bioavailable nanoparticles or gaseous

forms such as arsines, which are primarily or secondarily absorbed

through the inhalative route (Kinoshita, Hirose, Tanaka, & Yamazaki,

2004; Tian et al., 2014).

To complicate matters, environmental arsenic concentrations are

subject to wide variations, which may further reduce the usefulness

of environmental monitoring for health risk assessment. For example,

depending on the environmental conditions and the microbial flora



TABLE 2 Chronic arsenic intoxication diagnostic score (CAsIDS)

Fundamental condition (must be fulfilled with at least a “1” score) Score

1. Known or suspected exposure to inorganic arsenic at concentrations above the reference values for given time periods

100 days 0

3–12 months 1

1–3 years 2

3–26 years 4

26–50 years 8

>50 years 10

Essential condition (must be fulfilled with at least a “5” score) Score

2. Bone inorganic arsenic load (μg g−1)

≤0.060 0

0.061–0.153 5

0.154–1.530 10

1.531–15 20

15.1–150 30

>150 40

Typical systemic manifestations of chronic arsenic toxicity Score

3. Cutaneous disorders (at least four of the following): 5

itching;

erythema or cutaneous rash;

conjunctival congestion (it is sometimes observed but not associated with any signs of pain or inflammation in the affected
eyes);

palmo‐plantar hyperkeratosis (it is manifested as gradual thickening of soles and palms that leads to cracks and fissures);

dorsal keratosis (it may appear on dorsum of hands and feet);

Dupuytren's contracture;

melanosis (diffuse, abnormal deposition or development of black or dark pigment in the tissues, typically fine spotted melanosis
or raindrop pigmentation is found in palms or skin over the chest, back and sometimes on hands and legs);

leukomelanosis (it can be manifested as simultaneous appearance of pigmented as well as depigmented spots on legs, trunk
or other parts of body – The combined features of melanosis with keratosis in palms or soles are the cardinal features of
arsenical dermatitis, ASD);

mucous membrane pigmentation (it is found in some cases on the tongue, inner side of lips, gums or buccal mucous membrane);

Mee's lines (white lines in the nails).

4. Hematologic and/or immunologic disorder (at least one of the following): Leukopenia; eosinophilia; anemia including
poikilocytic anemia and megaloblastic anemia; splenomegaly and hypersplenism; relapsing infections (chronic infection or more
than 2 infections per year); atypical infections (e.g., relapsed tuberculosis).

5

5. Gastrointestinal disorders (at least two of the following): a metallic taste; jaundice; hepatomegaly; hepatic steatosis; liver disease,
e.g., non‐cirrhotic portal fibrosis with or without portal hypertension with bleeding esophageal varices and splenomegaly and hypersplenism;
incomplete septal cirrhosis. Loss of appetite, nausea, vomiting, abdominal pain, diarrhea and increased thirst are common in acute arsenic
poisoning but may be also observed in acute‐on‐chronic arsenic intoxication, as in osteoresorptive arsenic intoxication.

5

6. Metabolic, endocrine and reproductive disorders (at least one of the following): Insulin resistance and diabetes mellitus;
obesity; low weight; thyroid, parathyroid, gonadal or adrenal dysfunction; osteoporosis; abnormal fecundity; spontaneous
abortion.

5

7. Chronic pulmonary disease (at least two of the following): Lung function impairment; chronic cough; chronic bronchitis and
acute respiratory tract infections; pulmonary nodule; diffuse interstitial lung disease and chronic obstructive pulmonary
disease; bronchiectasis; bullous‐emphysema.

5

8. Cardiovascular disorders (at least two of the following): Peripheral vascular disease (including blackfoot disease); Raynaud's
phenomenon and acrocyanosis; non‐pitting edema of hands/feet; cardiomyopathy; ventricular tachycardia; QTc interval
prolongation; arterial hypertension; ischemic heart disease; stroke.

5

9. Renal disorders (at least one of the following): Fanconi syndrome (phosphaturia, glucosuria, aminoaciduria and low‐molecular
weight proteinuria); albuminuria; chronic kidney disease with progressive deterioration of renal function are clinical
characteristics associated with chronic arsenic exposure. Glomerular sclerosis and severe acute tubular necrosis involving
all the nephron segments as well as acute tubuleinterstitial nephritis may be observed in acute arsenic poisoning.

5

10. Pre‐malignancy or malignancy (any pre‐cancerous, primary or metastatic neoplasia involving any organ, cell or tissue type
including, though not restricted to, skin, bladder and lung).

5

11. Neuropathy (at least one of the following): Symmetric neuropathy, polyneuropathy, phrenic paresis, fatigue, hearing loss,
blindness, Guillain–Barré syndrome or Guillain–Barré‐like syndrome.

5

12. Encephalopathy or mental disease (at least two of the following): 5

chronic asthenia, insomnia, fatigue, weakness, malaise or dizziness;

(Continues)
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FIGURE 2 Arsenic‐related disorders in a female patient with ORAI
examined in 2012 in Heidelberg, Germany (Dani, 2013). Image of the
skin shows multiple hypopigmented spots of up to 2 mm in diameter on
the patient's leg; also visible are erythematous patches with light
hyperkeratotic scaling. Micrograph shows poikilocytic anemia:
Hemoglobin of 10.3 g dl−1, hematocrit of 32%, anisochromia,
hypochromia, anisocytosis and 10% of the erythrocytes showing
anomalous forms: Elliptocytes, drepanocytes, dacryocytes, acanthocytes,
echinocytes, schizocytes, stomatocytes and target cells. CAsIDS: 69 (CAsI
confirmed with a high degree of certainty). Photograph and micrograph
by S. U. Dani, April 2012, reproduced with permission of Elsevier

TABLE 2 (Continued)

Typical systemic manifestations of chronic arsenic toxicity Score

mental slowing, difficulty concentrating, light‐headedness, disorientation or confusion;

mood and/or behavioral disorder, depression or anxiety;

delirium, psychosis;

cognitive impairment, memory impairment or dementia.

TOTAL 100

Interpretation of CAsIDS results

CAsI confirmed with a high degree of certainty >51

CAsI confirmed 41–50

CAsI highly probable 31–40

CAsI probable 21–30

CAsI cannot be excluded (patient should be re‐evaluated) 7–20

CAsI excluded with certainty ≤6
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present in the soil, 0.05% to almost 100% soil inorganic arsenic is

volatilizated to arsines (Turpeinen, Pantsar‐Kallio, & Kairesalo, 2002).

It has been shown that arsine and methylarsines are stable in the air

in concentrations at the μg l−1 gas level and can travel considerable dis-

tances in the atmosphere from a point source before converting into

non‐volatile, oxidized compounds (Mestrot, Merle, Broglia, Feldmann,

& Krupp, 2011; Mestrot et al., 2011). Arsine decomposes on heating

and under the influence of light and moisture, producing toxic arsenic

fumes, whereby NIOSH recommends that persons 9.5 km downwind

must be protected during the night (NIOSH, 2015), a recommendation

that is hardly practicable. Environmental monitoring is not intended to

assess arsenic exposure at the individual level; therefore, it is essential

to determine arsenic in the human compartments.

4.2 | Assessing the individual risk by bone arsenic
load

We chose the BAsL as a reliable method to assess the individual CAsE

and related risks in our CAsIDS for the following reasons.

4.2.1 | Arsenic accidentally replaces phosphorus in a
number of metabolic pathways and physiological processes

Arsenic accidentally replaces phosphorus in a number of metabolic

pathways and physiological processes, including bone growth and

remodeling (Dani, 2011c). Replacement of phosphorus with arsenic in

the calcium phosphate hydroxylapatite (HAP) molecule in the bone

mineral matrix generates arsenate HAP (AsHAP) (Lee et al., 2009),

the main arsenic storage form in bone. The bones are the main body

reservoir of phosphorus (Shaker & Deftos, 2014), and hence the skel-

eton is the main arsenic storage compartment in the body. In addition,

bone is the only body compartment that steadily accumulates arsenic

over long exposure periods (Adeyemi et al., 2010).

4.2.2 | Sustained arsenate hydroxylapatite dissolution and
solubilization and arsenic release from the bones

Sustained AsHAP dissolution and solubilization (Zhang et al., 2011a)

and arsenic release from the bones during bone resorption may cause

ORAI (Dani, 2013) in a number of physiologic and pathologic condi-

tions. Bone resorption follows a circadian rhythm (Mautalen, 1970;



FIGURE 4 Arsenic‐related skin changes including erythematous
patches, hyperkeratosis and Bowen's disease in a patient examined
by the author in Worms, Germany. CAsIDS: 64 (CAsI confirmed with a
high degree of certainty). Photograph by S.U. Dani, October 2013,
reproduced with permission of Ciencia Hoje

FIGURE 3 Arsenic‐related melanosis and multiple squamous cell carcinomas (Bowen's disease) in a moribund patient examined in 2013 in Worms,
Germany. He had been chronically contaminated by inorganic arsenicals (“Arséniate de Chaux” and “Acéto‐Arsénite de Cuivre”) as a world war II
prisoner working in a pesticide factory in Lyon, France. Although the patient had developed a number of signs and symptoms of CAsI, the
confirmation of “arsenism” was only made in 1991, more than four decades after cessation of the occupational arsenic exposure. CAsIDS (without

BAsL): 47 (CAsI confirmed). Photograph by M. Kaess and S.U. Dani, September 2013, reproduced with permission of Ciencia Hoje
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Takarada et al., 2017) and bone turnover occurs at different rates in

anatomically heterogeneous bone structural units called osteons

(Cohen & Harris, 1958; Lukas et al., 2011; Robling & Stout, 1998;

Tappen, 1977). Bone turnover rates vary at 5–30% per year (Martin,
Burr, & Sharkey, 1998; Parfitt, 1983, 1994) while the median rate of

bone loss at multiple skeletal sites have been reported at −0.4% per

year in young adult women and men (Riggs et al., 2008). In addition,

approximately 20% of adult bone surface is undergoing remodeling

at any time (Shaker & Deftos, 2014). Chronic exposure to arsenic via

the osteoresorptive mechanism may render people susceptible to ele-

vated arsenic exposure years or even decades after an environmental

exposure has decreased or even ceased. Osteoresorption increases

over osteoanabolism in a number of physiological and pathological

conditions, meaning that ORAI may be a common outcome in patients

chronically exposed to arsenic. Conditions or agents known to increase

the osteoresorption rate include: pregnancy (Sanz‐Salvador, García‐

Pérez, Tarín, & Cano, 2015); bone remodeling during growth (Szulc,

Seeman, & Delmas, 2000); prolonged bed rest (Morgan et al., 1985);

stress as in physically demanding exercise with energy restriction and

sleep deprivation (Hughes et al., 2014); malnutrition (Kerstetter,

O'Brien, & Insogna, 2003; Trebble, 2005); diabetes (Kasperk,

Georgescu, & Nawroth, 2017); high‐salt intake (Buehlmeier et al.,

2012) as well as chronic hyponatremia (Barsony, Manigrasso, Xu,

Tam, & Verbalis, 2013); vitamin D [25(OH)D] insufficiency or defi-

ciency (Need, 2006), as well as excess of 1,25(OH)2D as in granuloma-

tous diseases such as sarcoidosis and tuberculosis (Tebben, Singh, &

Kumar, 2016); infection (Amiel et al., 2004; Fukada et al., 2008; Smith

et al., 2002) and inflammation (Haworth et al., 2004; Ruscitti et al.,

2015); gonadal dysfunction (Ferlin, Selice, Carraro, & Foresta, 2013;

Oury, 2012) including decreased testosterone (Mohamad, Soelaiman,

& Chin, 2016) and estrogen (De Oliveira, Fighera, Bianchet, Kulak, &

Kulak, 2012) production, as in post‐castration and post‐menopausal

states, respectively; hyperthyroidism (Bassett & Williams, 2016);

hyperparathyroidism (Bandeira et al., 2014); long‐term corticosteroid

therapy (Clarke, 2012); endogenous hypercortisolism (Chiodini,



FIGURE 5 Cutaneous signs of chronic arsenic intoxication in a 49‐
year‐old woman in Paracatu, MG, Brazil (clockwise from the top):
Melanosis of the palms; spotted and diffuse hyperkeratosis and
melanosis of the soles; blackfoot disease (peripheral vascular disease).
CAsIDS: 53 (CAsI confirmed with a high degree of certainty).
Photographs by S.U. Dani and H. A. Zschokke, February 2017
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Torlontano, Carnevale, Trischitta, & Scillitani, 2008); cancer (Goldner,

2016) and bone metastases (Coleman, 1997).

4.2.3 | Immunomodulatory agent and strong osteoimmu-
nological link between arsenic, inflammation and the immune
response

The bone and immune system are functionally interconnected, for

immune and bone cells derived from the same progenitors in the bone

marrow, they share a common microenvironment and are being influ-

enced by similar mediators. The evidence on increased bone resorption

associated with inappropriate activation of T cells such as during

inflammation is well established (Zupan, Jeras, & Marc, 2013). The

inflammatory milieu favors recruitment and activation of osteoclasts,

a process mediated by a number of cytokines and chemokines, which,

directly or indirectly, activate osteoclast precursors and enhance their

differentiation potential, thus mediating osteoresorption (Hess, 2006;

Sućur et al., 2014). Experimental exposure to arsenic at environmen-

tally realistic concentrations has been shown to compromise the cellu-

lar and humoral immune responses in avian (Aggarwal, Naraharisetti,

Dandapat, Degen, & Malik, 2008; Sattar et al., 2016) and murine

(Kozul, Ely, Enelow, & Hamilton, 2009; Kozul et al., 2009) species,
thereby making them prone to illnesses. Arsenic has been shown to

attenuate the T‐cell‐mediated immunity by suppressing the prolifera-

tion of T cells and cytokine release and increasing the frequency of

CD4(+) CD25(+) Foxp3(+) regulatory T cells (Song et al., 2015). Inter-

estingly, increased numbers of CD4(+) cells predispose to autoimmune

neuritis when these cells are stimulated by proinflammatory mediators

such as interferon‐γ (IFN‐γ) (Brunn et al., 2014).

4.2.4 | Arsenic exerts both stimulating and inhibiting
effects on osteoblast function

Arsenic exerts both stimulating and inhibiting effects on osteoblast

function, thereby modulating bone resorption in a concentration‐

dependent manner (Jia & Jin, 2006; Lever, 2002; Tang, Chiu, Huang,

Chen, & Chen, 2009; Xu et al., 2014). At arsenic concentrations found

in tissues of individuals exposed to geochemical AsO2, osteoclasts

underwent differentiation in vitro, leading to the conclusion that

chronic exposure to low‐level amounts of arsenic can result in

increased bone resorption and contribute to bone‐related pathologies

(Szymczyk, Kerr, Freeman, Adams, & Steinbeck, 2006).

4.2.5 | Arsenic accumulation in bone varies with environ-
mental exposure

Arsenic accumulation in bone varies with environmental exposure

through ingestion or inhalation (Lindh, Brune, Nordberg, & Wester,

1980) and age (Kuor, Kuo, Chou, & Lee, 2000). Information on the

arsenic concentration in human bone tissue is limited to a few studies

using different analytical procedures to analyze different bones of dif-

ferent people of different ages from different geographical origins and

times. These studies indicate arsenic concentrations in bone ranging

from 0.04 to 13 000 μg g−1 (Aras & Ataman, 1999; Kabata‐Pendias &

Pendias, 1999; Oakberg, Levy, & Smith, 2000; Rasmussen, Bjerregaard,

Gommesen, & Jensen, 2009; Rasmussen & Gwozdz, 1999; Smith,

1957). However, the extremely low arsenic concentrations may result

from using low sensitive analytical methods, and the extremely high

bone arsenic concentrations, i.e., in the milligram range, as reported

for some buried or fossilized bones are believed to be of diagenetic

origin. Therefore, we rely on the results of three ICP‐MS studies per-

formed on surgical or autopsy bone specimens (Brodziak‐Dopierała

et al., 2011; Mari et al., 2014; Yoo et al., 2002) in our CAsIDS.

4.2.6 | Osteoresorptive arsenic versus arsenic in hair and
nails

The arsenic detection limit for hair samples in spectrometry studies

varies between 2 and 10 ng g−1 (Rahman, Corns, Bryce, & Stockwell,

2000). Non‐exposed people show an average hair arsenic concentra-

tion of 0.06 μg g−1 (Hirner, Rehage, & Sulkowski, 2000), whereas

exposed people can have concentrations as high as 12.4 μg g−1

(Schmitt et al., 2002). Values higher than 1.2 μg g−1 indicate chronic

exposure (Anke, 1986), whereas WHO (2001c) considers

0.4–0.8 μg g−1 as normal and sets a minimal critical limit of 1 μg g−1.

As organic species of arsenic are not incorporated into keratin, hair

only reflects exposure to inorganic arsenic (Vahter, 1998). The distribu-

tion of arsenic in cross‐sections or along the length of a shaft of hair

cannot distinguish external contamination from arsenic derived from

ingestion (Hindmarsh, 2002). In comparison to hair, exogenous
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contamination is not a confounding factor for fingernails; therefore,

fingernails have been recommended as a biomarker to arsenic expo-

sure (Agahian, Lee, Nelson, & Johns, 1990; Brima et al., 2006; Mandal,

Ogra, & Suzuki, 2003). However, neither hair nor fingernails are long‐

term arsenic storage compartments, and therefore we prefer

osteoresorptive arsenic as a biomarker to CAsE.
4.3 | Estimate of the bone arsenic load/skeleton
weight by the two‐spot‐urine (Δ As/P) method

We assume that the dynamic release of phosphorus and arsenic from

calcium phosphate HAP and AsHAP in the bone matrix and the net

As/P ratio (Δ As/P) in two consecutive spot urine samples reflect the

net rate at which bone‐bound arsenic is released and can be detected

in urine at any time and hence we use the Δ As/P in our estimates of

BAsL as described elsewhere (Dani, 2013), with slight modifications.

To estimate the concentration of arsenic in the skeleton we

assume that the As/P ratio of the metabolically active bones reflects

the average As/P ratio in the skeleton. We multiply the Δ As/P with

the estimated skeleton phosphate content, divided by the skeleton

weight (SW) as a percentage of the ideal body mass for a given body

height [the fat‐free skeleton comprises about 3% of the body weight

in the fetus and newborn and about 6–7% of body mass in the adult

(Heymsfield, Lohman, Wang, & Going, 2005). In the fetus, we use the

SW as published by the ICRP for Reference Man (ICRP, 2002). To con-

trol for inconsistencies, we check our SW estimates against the Refer-

ence Man values. We express the BAsL as estimated (average) arsenic

concentration in bone, in μg g−1, by dividing BAsL by the skeletal

weight (BAsL/SW).

Our method requires 3 days of abstinence of rice and fish con-

sumption before the urine collection as well as two consecutive urine

samples with different arsenic concentrations, to differentiate the diet

arsenic from the osteoresorptive arsenic. An adequate phosphorus

excretion (i.e., urinary phosphorus concentration equal or above the

age‐specific estimated average requirement) is important to reduce

artifact due to arsenic‐for‐phosphorus swap (Dani, 2011c) or hungry

bone syndrome (Witteveen, van Thiel, Romijn, & Hamdy, 2013).

The urine samples are dissolved in HNO3 in the microwave and the

elemental analysis can be performed by ICP‐MS (Amarasiriwardena,

Lupoli, Potula, Korrick, & Hu, 1998) or atomic absorption spectrometry

(Aggett & Aspell, 1976). Useful screening methods include the

Merckoquant® colorimetric system (Merck, Darmstadt, Germany)

based on the Marsh test (Marsh, 1836), Gutzeit test (Gutzeit, 1915;

Kinniburgh & Kosmus, 2002) and a bioluminescence assay (Stocker

et al., 2003).
4.4 | Estimate of the bone arsenic load/skeleton
weight according to the Middlesex University
multicompartment model

To estimate the BAsL/SW in patients that do not present a circadian

variation in urinary arsenic concentration, we use the urinary arsenic

concentration to calculate the fraction of the arsenic retained in the

bone according to the multicompartment model of the Middlesex Uni-

versity (Adeyemi et al., 2010). This model states that under conditions
of chronic intake the concentrations of arsenic in the body reach equi-

librium after 100 days – only bone continues to accumulate arsenic. If

the oral intake of arsenic is suspended then the predicted organ con-

tent rapidly falls for all organs except bone. The Middlesex University

Model (herein referred to as “MUM”) adequately predicts the mea-

sured behavior of arsenic in the body and its excretion in urine/feces

following the single administration of 74As and 76As. It also produces

an estimate of tissue content of 76As shortly after administration and

following assumed chronic intake that is consistent with the measured

distribution of arsenic in human tissues collected at necropsy. To esti-

mate the fractional absorption of arsenic by the skeleton, we use the

power function as described in the MUM for the whole body:

Pt ¼ 108:9 t–0:7321 (1)

or “MUM Equation” where Pt is the retained percentage of intake at

time t.

To calculate the arsenic fraction retained by the skeleton, we

establish t = 100 in the MUM Equation days because this is the time

at which the arsenic content of all tissues except bone reach steady

state. The resulting fraction, 3.7% is multiplied by the patient's soft tis-

sue compartment arsenic load as predicted by the MUM's model:

BAsL : SW ¼ STAsL × 0:037ð Þ : SW (2)

where SW is the skeletal weight, based on the Reference Man (ICRP,

2002) and STAsL the soft tissue arsenic load as predicted by the

MUM. We consider the estimated level of arsenic exposition for the

fetus as equal to its mother.

4.5 | Cutaneous disorders are important, though not
mandatory in chronic arsenic intoxication

Although arsenic‐related skin lesions such as hyperkeratosis and

melanosis are common, skin changes are not mandatory manifesta-

tions of CAsI, and a large part of the population chronically exposed

to arsenic may have high levels of arsenic in urine, hair and nails,

even without showing apparent clinical symptoms, such as skin

lesions (Kapaj, Peterson, Liber, & Bhattacharya, 2006). In the classic

studies, only 11–15% of people chronically exposed to high arsenic

concentrations of 100 ppb and above in drinking water exhibited

such skin changes (Fatmi, Abbasi, Ahmed, Kazi, & Kayama, 2013;

Tseng et al., 1968).

4.6 | Hematologic disorders

CAsE has been associated with depression of hematopoiesis and vary-

ing degrees of pancytopenia (Cheng et al., 2004; Vernhet et al., 2008;

Woods & Fowler, 1977) and immune dysfunction (Kozul et al., 2009,

2009; Ragib et al., 2009).

Chronic eosinophilia and leukopenia have been reported in

CAsI (Feussner, Shelburne, Bredehoeft, & Cohen, 1979; Groch &

Heck, 1955; Sengupta, Saha, Jash, & Bandyopadhyay, 2012; Vrotsos,

Martinez, Pizzolato, Martinez, & Sriganeshan, 2014). Arsenic may
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increase the frequency of CD4(+) CD25(+) Foxp3(+) regulatory T cells

(Song et al., 2015), and increased numbers of CD4(+) cells predispose

to autoimmune neuritis when these cells are stimulated by proinflam-

matory mediators such as IFN‐γ (Brunn et al., 2014). This is of special

interest to the discussion of arsenic‐related neuropathy, Guillain–

Barré syndrome (GBS) and GB‐like syndrome (GBLS), and ORAI. The

frequency of peripheral blood mononuclear cells secreting IFN‐γ

and perforin has been shown to be significantly increased in human

papillomavirus (HPV)‐vaccinated versus non‐vaccinated volunteers

(Luckau, Wehrs, Brandau, Horn, & Lindemann, 2016), and IFN‐γ has

been shown to convert CD4(+) CD25(−) T cells in CD4(+) CD25(+)

T cells in patients with GBS (Huang, Li, Liang, & Wang, 2009). The

evidence on increased bone resorption associated with inappropriate

activation of T cells such as during inflammation is well established

(Zupan et al., 2013).

Anemia – including hemolytic, poikilocytic and megaloblastic

anemia – has been frequently observed in environmental, nutritional,

iatrogenic, osteoresorptive as well as experimental arsenic intoxication

(Biswas, Sen, & Biswas, 2010; Bollini et al., 2010; Correia et al., 2009;

Dani, 2013; Heck et al., 2008; Hopenhayn, Bush, Bingcang, & Hertz‐

Picciotto, 2006; Lee et al., 2004; Westhoff, Samaha, & Barnes, 1975).

Arsenite causes extensive damage to red blood cells, which impairs

their antioxidant system and alters the major cellular metabolic path-

ways (Maheshwari, Khan, & Mahmood, 2017). Splenomegaly with

hypersplenism may be present in association with arsenic‐related liver

disease (Nevens et al., 1990).
4.7 | Gastrointestinal disorders

Loss of appetite, a metallic taste, nausea, vomiting, abdominal pain,

watery diarrhea and increased thirst are common in acute arsenic poi-

soning (Campbell & Alvarez, 1989) but may be also observed in varying

degree in acute‐on‐CAsI, as in ORAI (Dani, 2013). Jaundice, hepato-

megaly, hepatic steatosis and liver disease like non‐cirrhotic portal

fibrosis and incomplete septal cirrhosis, with or without portal

hypertension with bleeding esophageal varices and splenomegaly and

hypersplenism have been associated with CAsE (Guha Mazumder,

2001; Liu & Waalkes, 2008; Nevens et al., 1990).
4.8 | Metabolic, endocrine and reproductive
disorders

Arsenic is a known metabolic disruptor (Bernstam & Nriagu, 2000;

Tseng, 2004), which is listed as an endocrine disruptor chemical by

the World Health Organization (WHO, 2013).

Arsenate, the pentavalent arsenic species (As5+) in high concentra-

tions can substitute phosphate and interfere with a number of meta-

bolic pathways. In the classic studies, sodium arsenate was used as a

glycolytic inhibitor. Among the studies on the effects of arsenate on

enzymes are the pioneering works of the most notable enzymologists

of the twentieth century such as Otto Warburg (1883–1970), Frank

Weistheimer (1912–2007) and Henry B. F. Dixon (1928–2008).

On the other hand, arsenite, the trivalent arsenic species (As3+) has

a high affinity for sulfhydryl groups and thus can form covalent

bonds with the disulfide bridges in several enzymes, receptors and
transporters involved in metabolism, thereby hampering the normal

functions of these molecules. Arsenite in physiologically relevant con-

centrations can induce oxidative stress, and interferences in signal

transduction or gene expression by arsenic or by its methylated metab-

olites are the most possible causes to arsenic‐induced diabetes mellitus

through mechanisms of induction of insulin resistance and beta cell

dysfunction. Arsenite at physiologically relevant concentrations

also shows an inhibitory effect on the expression of peroxisome

proliferator‐activated receptor γ, a nuclear hormone receptor impor-

tant for activating insulin action (Tseng, 2004). In fact, CAsE has been

associated with diabetes mellitus type 2 (Navas‐Acien et al., 2006) as

well as with obesity (Ceja‐Galicia et al., 2017).

CAsE has been also associated with thyroid, gonadal and adrenal

dysfunctions (Sun et al., 2016). CAsE is dose‐related to poor reproduc-

tive outcomes such as abnormal fecundity and spontaneous abortion

(Susko et al., 2017; Vahter, 2009; Zubair, Ahmad, & Qureshi, 2017).

Concentration‐related increases of fetal loss and infant death have

been observed in pregnant women chronically exposed to anthropo-

genic arsenic‐contaminated drinking water (Ahmad et al., 2001;

Rahman et al., 2007; Sohel et al., 2010). Arsenic easily passes the pla-

centa, and human studies indicate a moderately increased risk of

impaired fetal growth and increased fetal and infant mortality in CAsE

(Vahter, 2009).

Fetal death in connection with CAsE during pregnancy may be

indicative of ORAI. During normal pregnancy, bone resorption is

increased to meet the fetus's needs for calcium (Black, Topping,

Durham, Farquharson, & Fraser, 2000; Kovacs, 2012; Sanz‐Salvador

et al., 2015). Approximately 30 g of calcium is required for the success-

ful mineralization of the fetal skeleton, and 80% of that amount is

transferred during the third trimester, when placental calcium trans-

port averages 110–120 mg kg−1 day−1 (Kovacs, 2012). The arsenic

amounts released during the third trimenon from the bones of a

pregnant woman who had been chronically exposed to environmental

arsenic may be high enough to induce ORAI, because the fetus is more

vulnerable to CAsI than its mother is (Laine et al., 2015; Vahter, 2008).

Therefore, there is a causal nexus between CAsE → increased bone

resorption rates during pregnancy → increased release of bone‐bound

arsenic → sublethal arsenic intoxication of the mother → transplacen-

tal passage of osteoresorptive arsenic to the fetal compartments →

sublethal to lethal arsenic intoxication of the fetus.

Natural selection for arsenic tolerance may have increased the fre-

quency of protective variants of the As3MT gene in some indigenous

human populations exposed to this environmental risk over historical

time (Schlebusch et al., 2013). This reproductive fitness adaption may

have consequences to a number of other hardly won, nicely balanced

human‐specific adaptednesses (Dani, 2010a).
4.9 | Pulmonary disease

There is strong evidence of a general association between inorganic

arsenic and non‐malignant respiratory illness, including lung function

impairment, chronic cough, chronic bronchitis and acute respiratory

tract infections, pulmonary nodule, diffuse interstitial lung disease

and chronic obstructive pulmonary disease, bronchiectasis, bullous‐

emphysema, as well as non‐malignant lung disease mortality (Ergün
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et al., 2017; Milton & Rahman, 2002; Smith et al., 2011). Some reports

and studies have documented marked pulmonary as well as other neg-

ative health effects of early life arsenic exposure (i.e., in utero and/or

early childhood) throughout the lifespan (Ragib et al., 2009; Sanchez,

Perzanowski, & Graziano, 2016; Smith et al., 2006; Srivastava,

D'Souza, Sen, & States, 2007; Steinmaus et al., 2016; Vahter, 2008).

At least some forms of arsenic are well‐established lung carcinogens

in humans (Nemery, 1990; Smith, Goycolea, Haque, & Biggs, 1998;

Yoshikawa et al., 2008).
4.10 | Cardiovascular disorders

Cardiovascular diseases including arterial hypertension (Abhyankar,

Jones, Guallar, & Navas‐Acien, 2012), blackfoot disease (Tseng, 1977;

Yu et al., 1984) and stroke (Chiou et al., 1997; Navas‐Acien et al.,

2005) are dose‐related to CAsE. Cardiomyopathy can be a result of

arsenic intoxication (Ghariani et al., 1991; Hall & Harruff, 1989) or

the combined cardiotoxic effect of alcohol and arsenic (Bao & Shi,

2010). Microcirculatory assessments revealed that deficits of capillary

blood flow and permeability exist in clinically normal skin of patients

with chronic arsenical poisoning (Yu, Lee, & Chen, 2002). The patho-

genesis of non‐pitting edema in CAsI is unclear but may involve a cap-

illary leak syndrome with inflammation and maybe other capillary and

interstitial changes (Prasad & Sinha, 2017; Unnikrishnan et al., 2004;

Whiting & McCready, 2016).

Various arsenic compounds can induce ventricular tachycardia and

prolongation of the QTc interval (Barbey & Soignet, 2001; Ducas,

Seftel, Ducas, & Seifer, 2011; Goldsmith & From, 1980; Ohnishi

et al., 2000; Zhou et al., 2004). The frequency of electrocardiographic

changes that usually precede ventricular tachycardia and prolongation

of the QTc interval are directly related to the dose of cumulative expo-

sure to arsenic (Shen, Liu, Jiang, Lu, & Lu, 2004). Arsenic‐mediated

tachycardia is more frequent in patients with concomitant hypokale-

mia (Barbey, Pezzullo, & Soignet, 2003).
4.11 | Arsenic‐mediated nephrotoxicity and
nephropathy

Arsenic exposure as a risk factor for renal disease has been recognized

as early as 1970 (Levy, Lewin, Ninin, Schneider, & Milne, 1979; Robles‐

Osorio, Sabath‐Silva, & Sabath, 2015; Uldall, Khan, Ennis, McCallum, &

Grimson, 1970; Zheng et al., 2015). However, the use of biomarkers

such as KIM‐1 (Kidney Injury Molecule‐1) in studies on arsenic‐

mediated nephrotoxicity is recent (Cárdenas‐González et al., 2016).

Arsenic‐mediated nephrotoxicity is thought to involve uncoupled

oxidative phosphorylation causing reductions in sodium, phosphate

and glucose transport in the proximal tubule cells, which is manifested

clinically as Fanconi syndrome (phosphaturia, glucosuria, aminoaciduria

and low‐molecular weight proteinuria) (Brazy, Balaban, Gullans,

Mandel, & Dennis, 1980). Albuminuria associated with arsenic nephro-

toxicity may be related to direct endothelial dysfunction in the

podocyte and ascending thick portion of the nephron, with higher

doses in the mg kg−1 range resulting in moderate glomerular sclerosis

and severe acute tubular necrosis involving all the nephron segments;

acute tubulointerstitial nephritis has also been described as a clinical
manifestation of acute arsenic poisoning (reviewed in Robles‐Osorio

et al., 2015). Fanconi syndrome and CKD with progressive

deterioration of renal function are clinical characteristics associated

with CAsE.
4.12 | Chronic kidney disease versus diabetes
mellitus in chronic arsenic exposure

The precise causative mechanisms for both CKD and diabetes are gen-

erally unclear (Levey, Bilous, & Shlipak, 2016). In diabetes, outcomes

such as microvascular (nephropathy, retinopathy and neuropathy

eventually leading to blindness) and macrovascular (cardiac, cerebral

and peripheral) changes are collectively known as diabetic complica-

tions because they occur more commonly in people with rather than

without diabetes. However, CAsE itself can adversely impact the kid-

ney function in diabetic patients independently from blood glucose

levels (Robles‐Osorio et al., 2015; Wang et al., 2009), and arsenic can

aggravate CKD independently of other factors (Cheng et al., 2017).

Urinary arsenic has been dose‐related to vascular disorders

(Balakumar & Kaur, 2009; Moon et al., 2013; Navas‐Acien et al.,

2005; Srivastava et al., 2007; States, Srivastava, Chen, & Barchowsky,

2009; Tseng, 1977; Yu et al., 1984) and diabetes (Feseke et al., 2015;

Navas‐Acien et al., 2006). In addition, the pathological bone turnover

dynamics in diabetes (Kasperk et al., 2017; Koye et al., 2017) as well

as the decreased arsenic excretion in CKD may induce a vicious circle

featured in increased arsenic release from the bone compartment and

decreased arsenic excretion, which ultimately increase the CAsE and

cause or aggravate ORAI in patients with diabetes and CKD.

Therefore, it must be considered that microvascular complications

leading to CKD and blindness in CAsE may be causally unrelated to

diabetes, as both vascular disorders and diabetes may be primarily

related to CAsI. Accurate anamnesis, estimation of BAsL and a renal

biopsy for diagnosis confirmation are indicated in such circumstances.
4.13 | Neoplasia

Arsenic and several of its compounds are listed in the IARC Group 1 of

carcinogenic substances (IARC, 1980, 1982, 1987, 2004, 2009). There

is no threshold or safe exposure level for arsenic, and the cancer

morbidity and mortality effects of arsenic are dose‐dependent

(García‐Esquinas et al., 2013). Chronic exposure to high concentrations

of arsenic in drinking water results in the highest known increases in

mortality attributable to any environmental exposure (Smith et al.,

2007), and increased lung cancer risks are similar whether arsenic is

ingested or inhaled (Smith, Weber, & Juhasz, 2009).

The carcinogenic effect of trivalent forms of arsenic is most likely

due to their ability to induce oxidative stress responses (Kitchin &

Conolly, 2010; Tapio & Grosche, 2006; Thomas, 2007) including the

unfolded protein response (Li et al., 2011; Ramadan, Rancy, Nagarkar,

Schneider, & Thorpe, 2009; Srivastava et al., 2013; Weng et al., 2014).

Trivalent arsenic is able to activate a signaling cascade, which may be

linked to the epigenetic reprogramming of the genome and the malig-

nant transformation of cells (Bjørklund et al., 2017; Chen et al., 2013).

Trivalent arsenic is capable of converting normal stem cells into cancer

stem cells in different experimental settings (Chang, Chen, Thakur, Lu,
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& Chen, 2014; Tokar et al., 2010; Xu, Tokar, Sun, & Waalkes, 2012).

Arsenic has been shown to induce mutations in the mitochondrial

DNA and this might be one of the mechanisms of arsenic‐related

tumorigenesis (Lee & Yu, 2016; Liu et al., 2005; Partridge, Huang,

Hernandez‐Rosa, Davidson, & Hei, 2007).

Although several arsenic compounds are capable of causing

cancer, some arsenicals such as arsenic trioxide have been employed

as highly effective drugs in the therapy of APL (M3) (Rao, Li, & Zhang,

2013) and some solid tumors (Chen et al., 2002; Subbarayan &

Ardalan, 2014), either as a single agent or in combination with other

agents.
4.14 | Arsenic neuropathy

The onset of arsenic neuropathy can be acute, as in arsenic poisoning

or during treatment of APL with arsenic trioxide (Kühn, Sammartin,

Nabergoj, & Vianello, 2016); chronic, as in environmental arsenic expo-

sure; or acute‐on‐chronic, as in ORAI (Dani, 2013). The diagnosis of

acute arsenic neuropathy is straightforward and based on the associa-

tion of gastrointestinal disorders, encephalopathy and mood disorders

(Bahiga, Kotb, & El‐Dessoukey, 1978; Campbell & Alvarez, 1989;

Ratnaike, 2003). Acute arsenic intoxication is strongly related to sym-

metrical peripheral neuropathy in the upper and lower limbs, so that

the causal relation here is clear (Rodríguez, Jiménez‐Capdeville, &

Giordano, 2003; Vahidnia, van der Voet, & deWolff, 2007). In addition,

phrenic neuropathy with unilateral elevation of the diaphragm (Bansal,

Haldar, Dhand, & Chopra, 1991) and fatigue (Bajorin, Halabi, & Small,

2009; Sińczuk‐Walczak et al., 2014) have been associated with arsenic.

Yet the diagnosis of chronic arsenic neuropathy is relatively dif-

ficult to make, as it presupposes that a diagnosis of CAsI is made in

the first place, which may be a difficult task for unprepared physi-

cians. Although neurons as postmitotic cells and the nervous system

in general are believed to be highly susceptible to the effects of

CAsI, no CAsE threshold level for chronic arsenic neuropathy has

yet been firmly established. One explanation for this situation as

postulated by Perriol et al. (2006), is this: “Acute arsenic poisoning

is less frequent and it is most often lethal. Therefore, its conse-

quences are not well known, more precisely its neurological conse-

quences.” It is inferred that the low number of survivors of an

acute arsenic poisoning preclude systematic clinical studies of CAsI

to be performed.

Another explanation is that the more common, chronic, low‐level

arsenic neurotoxicity develops slowly over years and decades and it is

often subclinical in the early stages. In the HEALS study, increased

arsenic exposure in adults aged 20–50 years, as measured by both

cumulative and urinary measures, was associated with subclinical sen-

sory neuropathy assessed by a vibration sensitivity tester and

expressed as toe vibration threshold (Hafeman et al., 2005). For every

50 μg As per mg Cr increase in total urinary arsenic, there was an

increase in toe vibration threshold score. Symptoms of arsenic neu-

ropathy last for years and may even increase after the exposure has

ceased or following reduction of exposure (Lagerkvist & Zetterlund,

1994; LeQuesne & McLeod, 1977). Long‐term cumulative arsenic

exposure is a more important predictor of neuropathy than short‐

term fluctuations (Lagerkvist & Zetterlund, 1994).
Chronic arsenic neuropathy may be misdiagnosed also because

CAsI affects multiple systems and a number of conditions caused or

aggravated by arsenic such as diabetes mellitus, immune dysfunction

and GBS may masquerade the underlying arsenic neurotoxicity. Severe

axonal degeneration and loss, and segmental demyelination might be

equally prominent pathological features of the neuropathy caused by

arsenic, depending on arsenic dosage and duration of exposure

(Goddard, Tanhehco, & Dau, 1992; Oh, 1991).
4.15 | Arsenic‐induced Guillain–Barré‐like syndrome

There is a strong, though not straightforward relation of GBS to arse-

nic neurotoxicity. At the outset, a distinction must be made between

GBS and GBLS. The classical GBS is considered the most common

and most severe acute paralytic neuropathy with a worldwide overall

incidence of about 1.3:100 000 per annum (Willison, Jacobs, & van

Doorn, 2016) and about 0.6:100 000 in children <15 years of age

(McGrogan, Madle, Seaman, & de Vries, 2009). None the less, a mis-

diagnosis of GBS in arsenic polyneuropathy is not infrequent, and

there are several reports of arsenic‐induced sensorimotor neuropathy

mimicking GBS with or without any systemic manifestation of arsenic

intoxication affecting groups of arsenic‐exposed people (Barton &

McLean, 2013; Donofrio et al., 1987; Franzblau & Lilis, 1989; Gear,

1984; Jalal, Fernandez, & Menon, 2015; Kim et al., 2012; Mathew,

Vale, & Adcock, 2010). In 2011, the crude incidence rate of GBS in

Bangladesh, a country where anthropogenic environmental arsenic

contamination is endemic, in children <15 years of age, appeared to

be 2.5× to 4× higher than that reported in the literature (Islam

et al., 2011).

Arsenic neuropathy and arsenic‐induced GBLS commonly occur

because of environmental arsenic contamination (Misra & Kalita,

2009), stressing the value of accurate environmental and occupa-

tional anamneses for a correct diagnosis. Kawasaki and colleagues

(Kawasaki et al., 2002) describe the development of predominantly

sensory polyneuropathy in patients exposed to anthropogenic arse-

nic released to the environment during decades of mining activities

in the Toroku Valley, Japan. Their study and other surveys con-

ducted on the Toroku Valley (Hotta, Harada, Hattori, et al., 1979;

Nakamura et al., 1973a, 1973b) call attention to the long latency

period between the beginning of the exposure to arsenic in different

matrices (e.g., gaseous effluent, dust, water) and the first medical

records of arsenic‐related neuropathy.

Arsenic‐induced neuropathy must be considered in the differ-

ential diagnosis of GBS in the presence of suspected or known

CAsE, elevated arsenic in the body compartments including bone,

as well as typical signs and symptoms of arsenic intoxication – no

matter the presence of typical GBS changes such as albumi-

nocytological dissociation in the cerebrospinal fluid, infectious or

parasitic disease and autoimmune disease. The trigger of GBLS

might be a cytokine storm (Bartfai et al., 2007; Papanicolaou,

Wilder, Manolagas, & Chrousos, 1998) leading to a significant

increase in the bone resorption rate thereby causing an acute arsenic

release from the bone compartment, accompanied by a polyspecific

humoral response with systemic and intrathecal production of

immunoglobulins, or a change in the blood–brain barrier permeability
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caused by hyperthermia (Sharma & Johanson, 2007), stress (Tomkins

et al., 2001) or arsenic itself (Rai, Maurya, Khare, Srivastava, &

Bandyopadhyay, 2010).

This sequence of events may also be observed in response to vac-

cination, making it difficult to tell arsenic toxicity and the immune

response to vaccination apart from each other. However, it is interest-

ing that an association between HPV vaccination and GBS is fre-

quently made, in spite of GBS following HPV vaccination being a

very rare event (Katoulis et al., 2010; Ojha et al., 2014).

Recent infectious diseases caused by agents such as Zika virus,

Dengue virus, Chikungunya virus or influenza virus as primary triggers

of GBS can be ruled out if the onset of the neurological signs and

symptoms occurs during the dry season, or when no infectious disease

outbreak is recorded where the patient lives or the place the patient

has visited on travel. Viral infections typically present a seasonality

pattern with a peak during the wet season (Cao‐Lormeau et al.,

2016; Cortese et al., 2012; Oehler et al., 2015; Pastula et al., 2017;

Ralapanawa, Kularatne, & Jayalath, 2015; Simon et al., 2016). Other

exclusion criteria include a clinical presentation that may not fit

completely to infection, e.g., no myalgia, no joint pain, no retrobulbar

pain, no sign or symptoms suggestive of Campylobacter enteritis or

Mycoplasma infection as possible triggers of GBS (Ang et al., 2000;

Sharma et al., 2011).

Encephalopathy concomitant to GBLS is an important differential

diagnosis criterion since it is considered pathognomonic of arsenic

neuropathy and arsenic‐induced GBLS as opposed to classical GBS

and therefore we will review it separately as follows.
4.16 | Arsenic encephalopathy

Arsenic‐induced encephalopathy characterized by confusion, word‐

finding difficulty, and mood and behavioral changes helps differentiate

classical GBS from arsenic‐induced GBLS (Dally & Conso, 1984; Lin

et al., 2008; Perriol et al., 2006). Although short‐term memory impair-

ment, difficulty concentrating and disorientation associated with occu-

pational exposure to arsenic can be at least partially reversible upon

interruption of exposure (Morton & Caron, 1989), it is unclear whether

recovery of cortical functions do occur or if compensatory strategies

are developed (Bolla‐Wilson & Bleecker, 1987). In addition, cognitive

impairments can be long lasting in the context of a central neurodegen-

erative process caused or aggravated by CAsI. In a meta‐analysis, arse-

nic concentrations in topsoils in the 7–18 ppm range have been found

exponentially related to the prevalence and mortality of Alzheimer's

disease and other dementias in European countries (Dani, 2010b). Even

low arsenic concentrations can impair neurological function, causing

cognitive dysfunction, including learning and memory deficits and

mood disorders such as depression and anxiety (Chang et al., 2015;

Tyler & Allan, 2014).

Arsenic reproductive and developmental toxicities can manifest

themselves as mental retardation in the offspring of exposed parents

(Kim & Kim, 2015; Liu, McDermott, Lawson, & Aelion, 2010). In the

HEALS study, arsenic at low to moderate exposure levels (i.e., water

arsenic levels >50 μg l−1) was associated, in a dose–response manner,

with reduced intellectual function in children (Wasserman et al.,

2004, 2007).
4.17 | Implications for therapy

The most effective therapies of acute arsenic intoxication are removal

of the exposure source and adequate ventilation and hydration, with

close monitoring of the cardiorespiratory, hematological and renal sta-

tus. The presently available chelation therapies have questionable

value as they may aggravate the clinical status of poisoned patients

(Andersen & Aaseth, 2016).

The conditions under which arsenic can be released from proteins

in vitro may be too harsh to allow for any clinical application. However,

correcting an eventual hypophosphatemia may decrease the As/P ratio

by competitively displacing arsenic in the cell, thereby decreasing the

arsenic toxicity (Ginsburg & Lotspeich, 1963). Adequate calcium and

vitamin D (cholecalciferol) supplementation, as well as anti‐

osteoresorptive therapy with a bisphosphonate has been shown to

be effective in reducing the ORAI (Dani, 2013).

Approaches to boost mitochondrial bioenergetics (Szalárdy,

Zádori, Klivényi, Toldi, & Vécsei, 2015), including boosting the pyru-

vate dehydrogenase activity by thiamine (Costantini et al., 2016) and

magnesium (Lonsdale, 2015) as well as using methylene blue as an

alternative mitochondrial electron transfer (Yang et al., 2015) await

experimental and clinical testing. The use of exogenous and endoge-

nous antioxidants (Chan & Chan, 2015; Kulkarni & Cantó, 2015) is also

a concept that deserves experimental and clinical verification. Activa-

tion of antioxidant systems and antioxidative agents such as glutathi-

one, manganese superoxide dismutase and N‐acetyl‐cysteine hold

promise to mitigate at least part of the deleterious effects of reactive

oxygen species and CAsI (Zhang et al., 2011c).

4.18 | Implications for disease prevention

Long latency periods of sustained cancer risk, skin lesions and neurop-

athies are the hallmarks of CAsI. As the bones are the most important

arsenic store compartment in the body, CAsE via osteoresorption may

sustain the endogenous arsenic exposure for decades after an environ-

mental arsenic exposure has decreased or even ceased. A rise in the

osteoresorption rates or a decrease in the renal function or both may

temporarily disturb the arsenic steady state in the body, leading to an

acute‐on‐CAsE and ORAI. Cessation of arsenic exposure is the most

effective preventative measure, and regular health monitoring, with

attention to conditions known to induce ORAI, is necessary during

and after arsenic exposure.
5 | CONCLUSION

Our CAsIDS can help physicians establish the diagnosis of CAsI and

associated conditions. The development of a web‐based application

of CAsIDS will help make this diagnostic tool globally available to

patients and physicians at www.arsenic.clinic, and help further validate

it in different locations and clinical settings.
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